Matching extension in K1,r-free graphs with independent claw centers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matching extension in K1, r-free graphs with independent claw centers

We say that a graph G is k-extendable if every set of k independent edges of G can be extended to a perfect matching. In the paper it is proved that if G is an even (2k + 1)-connected K 1;k+3-free graph such that the set of all centers of claws is independent, then G is k-extendable. As a corollary we obtain an analogous result for almost claw-free graphs and for claw-free graphs, thus extendin...

متن کامل

Reconfiguring Independent Sets in Claw-Free Graphs

We present a polynomial-time algorithm that given two independent sets in a claw-free graph G decides whether one can be transformed into the other by a sequence of elementary steps. Each elementary step is to remove a vertex v from the current independent set S in the sequence and to add a new vertex w (not in S) such that the set S−v+w is independent

متن کامل

Counting Independent Sets in Claw-Free Graphs

Although many of the counting problems (e.g. counting independent sets or matchings in a graph) are known to be #P-Complete (see Vadhan [3]), a remarkable progress has been done in designing exponential time algorithms solving them. Dahllöf, Jonsson, Wahlström [2] constructed algorithms that count maximum weight models of 2-SAT formulas in time O∗(1.2561n). This bound bound was later improved t...

متن کامل

Total Domination and Matching Numbers in Claw-Free Graphs

A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. The matching number of G is the maximum cardinality of a matching of G. A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. If G does not contain K1,...

متن کامل

Claw-free Graphs VI. Colouring Claw-free Graphs

In this paper we prove that if G is a connected claw-free graph with three pairwise non-adjacent vertices, with chromatic number χ and clique number ω, then χ ≤ 2ω and the same for the complement of G. We also prove that the choice number of G is at most 2ω, except possibly in the case when G can be obtained from a subgraph of the Schläfli graph by replicating vertices. Finally, we show that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1997

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(96)00059-3