Matching extension in K1,r-free graphs with independent claw centers
نویسندگان
چکیده
منابع مشابه
Matching extension in K1, r-free graphs with independent claw centers
We say that a graph G is k-extendable if every set of k independent edges of G can be extended to a perfect matching. In the paper it is proved that if G is an even (2k + 1)-connected K 1;k+3-free graph such that the set of all centers of claws is independent, then G is k-extendable. As a corollary we obtain an analogous result for almost claw-free graphs and for claw-free graphs, thus extendin...
متن کاملReconfiguring Independent Sets in Claw-Free Graphs
We present a polynomial-time algorithm that given two independent sets in a claw-free graph G decides whether one can be transformed into the other by a sequence of elementary steps. Each elementary step is to remove a vertex v from the current independent set S in the sequence and to add a new vertex w (not in S) such that the set S−v+w is independent
متن کاملCounting Independent Sets in Claw-Free Graphs
Although many of the counting problems (e.g. counting independent sets or matchings in a graph) are known to be #P-Complete (see Vadhan [3]), a remarkable progress has been done in designing exponential time algorithms solving them. Dahllöf, Jonsson, Wahlström [2] constructed algorithms that count maximum weight models of 2-SAT formulas in time O∗(1.2561n). This bound bound was later improved t...
متن کاملTotal Domination and Matching Numbers in Claw-Free Graphs
A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. The matching number of G is the maximum cardinality of a matching of G. A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. If G does not contain K1,...
متن کاملClaw-free Graphs VI. Colouring Claw-free Graphs
In this paper we prove that if G is a connected claw-free graph with three pairwise non-adjacent vertices, with chromatic number χ and clique number ω, then χ ≤ 2ω and the same for the complement of G. We also prove that the choice number of G is at most 2ω, except possibly in the case when G can be obtained from a subgraph of the Schläfli graph by replicating vertices. Finally, we show that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1997
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(96)00059-3